\\./

A\

——

?“j EREI Sy ~
: Fuary

44
. £

onA Lon.
v a R
, NAGI-3 J?
//V‘ o / /ﬂ /
1986 MID-YEAR REPORT .
//) —;(\:ﬁ) O <
NASA Grant NAG 1-138 D)
: 4077

SAGA: A Project to Automate the Management of
Software Production Systems

Principal Investigator
Roy H. Campbell

C. S. Beckman-Davies

L. Benzinger
G. Beshers

D. Laliberte!
H. Render!

R. Sum!
W. Smith .

R. Terwilliger!

University of Illinois
Department of Computer Science
1304 W. Springfield Ave.
Urbana, IL 61801-2987.
217-333-0215

This report details work in progress on the SAGA project
during the first half of 1986.

el

(NAS2-CR-180276) SAGA: A FECJECTI TO N87=-27412
AUICMATE THE MANACEMEMNT OF SCFIWARE

EECDUCTICN SYSTEMS Mid-Year Ee€port, 1986

(Illincis Univ.) 6C7 p Avail: BTIS HC Dnclas
AS9/MF AQ1 CSCL 09B G3,s61 0063680

! These graduates were research assistants on NASA Grant NAG 1-138.

1986 MID-YEAR REPORT

NASA Grant NAG 1-138

SAGA: A Project to Automate the Management of
Software Production Systems

Prineipal Investigator
Roy H. Campbell

C. S. Beckman-Davies
L. Benzinger
G. Beshers
D. Laliberte!
H. Render!
R. Sum!
W. Smith
R. Terwilliger!

University of Illinois
Department of Computer Science
1304 W. Springfield Ave.
Urbana, IL 61801-2987.
217-333-0215

This report details work in progress on the SAGA project
during the first half of 1986.

! These graduates were research assistants on NASA Grant NAG 1-138.

TABLE OF CONTENTS

1. SUmMmMArY . . « «o o o o o o o o o o o s s o o o o o o o o o o s o o o o1

2., OVEIVIeW « « «¢ ¢ ¢ ¢« ¢ o 4 v 4 4 4 4 4 4 4 e e e e e e e e e e e e e e 2

3. ENCOMPASS + « « o o o o s o o s o o o o o o o o o o o o o o o« o s o 3

4, Configuration Control . . . ¢ & ¢ v v e v ¢ o ¢« o o o o o o o o o s o 4

5. The Epos Editor ; e e e s e 4 s s e e s e e e s e e s e e e s s e 5

6. Software Engineering Management . . . « + « & « « o o o o « o« & o o« + 5

7. A Model for Stepwise Development of Programs + « « « & « &« &« « 6

8. Comparison Tools and Software Environments . . « « « « « « o o o « o o 7

9. A COCOMO cost estimating package . . o « o « o o o o o o « o o« o o o o 1
APPENDICIES

A. SAGA Bibliography

B. PLEASE: Predicate Logic based ExecutAble SpEcifications

C. The SAGA Approach to Automated Project Management

D. SAGA: A Project to Automate the Management of Software Production Systems

E. The SAGA Editor: A Language—Oriented Editor Based on Incremental LR(1l) Parser
F. An Example of a Stepwise Development Methodology

G. An Abstract Model for the Stepwise Development of Programs

H. Toward a Theory of the Stepwise Development of Programs

I. Incremental Software Development using Executable, Logic-based Specifications
J. Prolog Support Libraries for the Please Language

K. Organizing Differences for More Effective Use by Programmers

L. GNU Emacs Uniform User Interface for the SAGA Software Development Environment
M. CLEMNA: An Automated Configuration Librarian

N. A Preliminary Proposal for Software Engineering Management Tool

0. A Summary of the Software Development Cycle of AT&T in Middletown, NJ

P. Project Scheduling Software User's Manual

1. Summary

This report describes the current work in progress for the SAGA project. The

highlights of the research in the last six months are:

Clemma, an automated configuration librarian, is undergoing development.
Clemma will provide configuration management and version control capabilities for
the SAGA system. Clemma is being implemented using the Troll database and the
UNIX file system. A prototype of Clemma will be completed in the Fall of 1986.

GNU Emacs as an alternative user interface for the Epos editor.

A formal foundation for the stepwise development of software components includ-
ing a formal model for the stepwise development of verified programs and an exam-
ple of a stepwise development method which falls within the framework of the for-
mal model.

A survey of software management techniques in AT&T.
A design for a project management utility for SAGA.
An implementation of the Cocomo cost model in a software package.

A prototype implementation of ENCOMPASS written in a combination of C, Csh,
Prolog and Ada.

Simple implementations of the project management and configuration control sys-
tems in the ENCOMPASS prototype supporting "'programming in the small".

An initial version of ISLET, the language-oriented editor used to create PLEASE
specifications and refine them into Ada implementations. '

An initial version of the software which automatically translates PLEASE
specifications into Prolog procedures and generates the support code necessary to
call these procedures from Ada.

The run-time support routines and axiom sets for a number of pre-defined types in
ENCOMPASS.

Interfaces to the ENCOMPASS test harness and TED.

PLEASE features to support if, while, and assignment statements, as well as pro-
cedure calls with in, out or in out parameters.

PLEASE features to support a small, fixed set of types including natural numbers,
lists, booleans and characters.

PLEASE and ENCOMPASS use to develop small programs, including specification,
prototyping, and mechanical verification.

Appendix A contains a list of twenty theses and papers that document the project.

Six of these were produced since the last mid-year report. Appendices B through P con-
tain reports, thesis proposals, papers, and other work produced as part of the NASA
project.

SAGA Project 1988 Mid-year Report 2

2. Overview

Large scale software development is so expensive that new techniques and methods
are required to improve productivity. The software development environment is a pro-
posed solution in which software development methods and paradigms are embedded
within a computer software system. The goal of an environment is to provide software
developers with a computer—aided specification, design, coding, testing and maintenance
system that operates at the level of abstraction of the software development process and
the application domains of its intended products.

Proposed software development environments range from simple collections of software
tools that enhance the development process to complex systems that support sophisti-
cated software production methods. Every environment must include a representation
for the eventual software products and a, perhaps informal, notion of the software
development process. In the SAGA project, we have been investigating the principles
and practices underlying the construction of a software development environment. In
this report, we review our studies and results and discuss the issues of providing practi-
cal environments in the short and long term.

Research into software development is required to reduce the cost of producing
software and to improve software quality. Modern software systems, such as the embed-
ded software required for NASA’s space station initiative, stretch current software
engineering techniques. The requirements to build large, reliable, and maintainable
software systems increases with time. Much theoretical and practical research is in pro-
gress to improve software engineering techniques. One such technique is to build a
software system or environment which directly supports the software engineering pro-
cess. In this report, we will describe research in the SAGA project to design and build a
software development environment which automates the software engineering process.

The design of a computer-aided software development environment should be
guided by the problems that arise in manual software development methods. Many of
these problems are reflected in software cost estimation models and measurements.
Software costs are very sensitive to mistakes in the early requirements and design phases
of development. Programmers and program testers vary greatly in the productivity and
quality of their work. However, high-level languages and software tools to support
development may increase the productivity of a programmer. Orders of magnitude
improvement in the productivity of software engineers might be achieved in many appli-
cation areas if the products of software engineering can become reusable, that is, if the
requirements, design, documentation, validation, and verification of a software system
can be reused in maintenance and in building new systems.

The SAGA project is investigating the design and construction of practical software
engineering environments for developing and maintaining aerospace systems and applica-
tions software. The research includes the practical organization of the software lifecycle,
configuration management, software requirements specification, executable specifications,
design methodologies, programming, verification, validation and testing, version control,
maintenance, the reuse of software, software libraries, documentation and automated

SAGA Project 1988 Mid-year Report 3

management. An overview of the SAGA project components is described in Appendices
C and D.

In several of the papers we have produced, we argue for research into formal models
of the software development process (Appendices D, F, G, and H.) Such formal models
should aid experimental evaluation of the practical techniques that are used in the con-
struction of software development environments.

The SAGA project is developing models of configuration, design, incremental
development, and management. The concepts and tools resulting from SAGA are being
used to develop a prototype software development system called ENCOMPASS (Appen-

dices I and Bz). Although the research has developed many general tools and concepts
that are independent of the application language and domain, we hope to extend
ENCOMPASS to support the development of large, embedded software systems written
mainly in ADA.

In the remainder of this report, we describe in more detail the work accomplished
this year.

3. Encompass

An initial prototype of the ENCOMPASS environment has been constructed on a

Sun workstation running Unix®. The system uses the Verdix Ada* Development System

as well as many tools developed by the SAGA project. The prototype contains simple
facilities for configuration control and project management and has a uniform, object-
oriented user interface. From ENCOMPASS, the user can invoke IDEAL (Incremental
Development Environment for Annotated Languages) which provides facilities for speci-
fying, prototyping, testing and implementing Ada programs.

IDEAL implements a development methodology' similar to VDM. Procedures are
first specified using pre- and post-conditions written in a subset of first order predicate
logic. These specification can be automatically transformed into prototypes written in a
combination of Ada and Prolog. ENCOMPASS provides tools that support the creation
of acceptance tests using these prototypes. To create and refine specifications, the pro-
grammer uses ISLET (Incredibly Simple Language-oriented Editing Tool) an incremen-
tal, language-oriented editor specifically for incremental refinement of the PLEASE
language. '

Using ISLET, the PLEASE specification is incrementally refined into an Ada pro-
gram. This process is viewed as the construction of a proof in the Hoare Calculus. Each
refinement is verified before another is applied; therefore, the final program satisfies the
original specification. Verification conditions are generated from each refinement step.
ISLET can certify many VCs using algebraic simplifications and simple proof pro-
cedures. If these measures fail, ISLET invokes TED as an interface to a general purpose

% B contains an early description of our work.
% Unix is a trademark of AT&T

* Ada is a trademark of the United States government.

SAGA Project 19886 Mid—year Report 4

theorem prover.

Appendices B and I report more fully on PLEASE and ENCOMPASS. Appendix I
contains Bob Terwilliger’s Ph.D. Preliminary proposal and two supporting papers. The
PLEASE paper in Appendix B has been presented at a conference. Appendix J contains
a thesis by Phillip Roberts on the translation of predicates to Prolog.

4. Configuration Control

A prototype configuration librarian, Clemma, is currently under development.
The goal of the system is to provide a means of organizing, indexing and storing the
on-line components of software projects. Users will be able to store both individual files
and hierarchies of files as configuration items in the library. An overview of some of the
issues involved in configuration management and a description of a small Saga prototype
can be found in the ENCOMPASS paper in Appendix [

Because (as Nestor pointed out in a recent CMU technical report) there are many
deficiencies with using just a file system or data base to represent components of a
software development, we have adopted a combined approach in which both a data base
and a file system are used. The deficiencies of traditional data bases and file systems for
representing components of software development has been known for some time and
several projects are attempting to implement persistent object storage (a French Esprit
project is already implementing such a data base under Unix). It is unclear, as of this
moment, whether these attempts will be successful.

Our approach of combining data bases with file systems has the advantage that it
does permit the rapid prototyping of many of the facilities which are needed. It also
obviates the need to construct a complex piece of software, at least until the perfor-
mance characteristics of persistent object storage are better understood.

Clemma will provide several capabilities:

e Baselines of software modules can be recorded and updates can be tracked and used
to form new baselines.

e Stored modules can be checked out for re—use, with access lists provided to handle
problems of permission and change control.

e A browser will be incorporated so that users may more easily find useful modules in
the library. This should greatly promote software re-use.

o “Views” of modules will be implemented as hierarchical groupings of stored
configuration items. This will greatly aid testing, validation and re-use of software
systems.

e By placing constraints on the state of items checked into the library (whether an
item is fully documented, tested, etc.) one will be able to implement a development
methodology for the software, and control the construction and use of individual
components.

The system will be written primarily in the C programming language, and will use
the Troll DBMS and Unix™ file system for support. The current prototype of Clemma

SAGA Project 1988 Mid—year Report b

is expected to be completed in the Fall of 1986.

Appendix M contains an early draft of Clemma’s des.ign, a more detailed document
is being prepared. As of September, major parts of Clemma have been programmed.

5. The Epos Editor

Peter Kirslis completed the major parts of the Epos editor and finished his Ph.D.
which is included as Appendix E. He is continuing development of a SAGA-based editor
in his current employment at AT&T in Denver. His new editor will be based on Lex and
Yacc and an internal AT&T editor interface. George Beshers regular-right part gram-
mar based Olorin editor generator system is near completion. George is currently revis-
ing his Ph.D. thesis having passed the oral examination.

The prototype user interface to the Epos editor became the major obstacle to
deploying Epos for practical software development. In order to facilitate the integration
of several Saga utilities, we decided to adopt the GNU Emacs extensible editor as the
front end user interface. The EPOS incremental parser, the incremental semantics pro-
cessor, and other Saga utilities may now be added to the GNU Emacs environment as
background processes which will communicate with each other through Emacs. Each
pair of communicating processes requires an interface which is programmed in the GNU
Emacs extension language, ELisp.

The interface between GNU Emacs and the incremental parser has been completed.
GNU Emacs itself was changed to pass all text changes to the interface. The interface
collects these changes within local regions, and eventually passes them on to the incre-
mental parser. Parsing errors are signalled with an error message and the unparsed text
is highlighted. Highlighting required another, more difficult change to GNU Emacs.
User commands which need to look at the parse tree, such as token movement or tree
selection, ask the parser to return the appropriate information.

A number of modifications were made to the Epos incremental parser to allow it to
be used with the Emacs front-end. The primary task was to extract the parser from the
Epos editor and to develop an interface of primitive commands to be used by Emacs.

The parse tree representation was upgraded to allow arbitrary text to be stored in
the tree (including tabs and trailing blanks). Standard Pascal multi-line comments are
now supported, although a change of the termination of a comment is not yet properly
reparsed. Also added was a module to allow selection and modification of a range of the
parse tree for use by the editor. A number of previously-existing bugs in the parser
were revealed and fixed while developing this new interface. Appendix L contains a
description of the new GNU EMACS-based Epos.

8. Software Engineering Management

We wish to automate much of the control, communications, and tracking that is
associated with the products involved during the lifetime of a software system. To date,
we have been looking at various global pictures of the software lifetime to determine
what management structures are used and what they require to be used effectively. We
would like the management tool to support most management structures of workers

SAGA Project 1986 Mid—year Report 6

(including managers) and documents (including program and management).

Appendix O contains a summary of management techniques used in AT&T Middle-
town to support the software for System 75, the digital telephone exchange. The sum-
mary was collected by Bob Sum on a visit to AT&T. The summary is being correlated
with the various NASA proposed lifecycle tasks. We have also being studying other pro-
posed project management systems. As part of these studies, Professor Campbell
attended the Lancaster Software Environments conference, Trondheim Software
Engineering conference, and RADC KPSA meeting. The most advanced of project
management systems appear to be that of the Carnegie Group Inc., the Kestrel Institute,
Boeing, and TRW. It is clear from these studies that there still remains much to be
done to integrate project management with the other activities in software development
and that most systems remain primitive or are prototypes.

In Appendix C, Campbell and Terwilliger discuss the notion of tasks being passed
between the in trays and out trays of software developers. That paper begins to address
the problem of interrelating project management with configuration control and other
SAGA tools. Project management and configuration control interaction have also been
prototyped as part of ENCOMPASS and a description of this work can be found in the
ENCOMPASS paper in Appendix I. In particular, the need for a finer granularity of
milestone is discussed. Further extension of these ideas that should form part of an
eventual management tool may be found in Appendix N.

Work is now progressing on developing an implementation of these ideas. This
work will build upon Clemma and earlier designs for the project management system.

7. A Model for Stepwise Development of Programs

The task of specifying and designing a software a software component and verifying
that the component satisfies a given specification is quite difficult. An approach which
makes this task more manageable is to divide the development of a software component
into a series of steps. At each step the following occur:

(1) The software component is specified. At each step after the first, the specification
is an augmentation of the specification at the preceding step.

(2) Design decisions which are consistent with design decisions at preceding steps are
made.

(3) It is determined that the (possibly incomplete) software component satisfies its
specification.

The Vienna Development Method (VDM) {Jones, 80| is an example of such a stepwise
development method.

In order to study the properties of a particular stepwise development method or to
compare different stepwise development methods, it would be advantageous to have a
formal model for the stepwise development process. In addition, any attempt to auto-
mate this process would benefit from formalizing the notions involved. A formal model
has been constructed and is described in some detail in Appendix H. More concise state-
ments of the model will be found in Appendices F and G. It is conceptually simple and
independent of both the specification ‘method used and the method used for determining

SAGA Project 1986 Mid—year Report 7

that a software component satisfies its specification. It contains formal definitions for
such basic ideas as a development, a correct development, a development step, and a
correct development step.

The model has been used in the study of an example of a stepwise development
method. The example is a method for the stepwise development of programs which are
verified to be partially correct with respect to specifications. The specifications are
expressed in terms of pre- and post-conditions. The model has been most helpful in the
construction of the example. In one case, the requirements of the model were met in the
example because of the soundness and relative completeness of the Hoare calculus. If the
example is viewed apart from the model, it is not obvious that these properties of the
Hoare calculus are needed. The model was also useful in modifying the Hoare calculus,
which is a method for program verification, into a stepwise verification method for
software components. '

A description of the formal model and results concerning the properties of the
model have been obtained. An example of a stepwise development method based upon
the Hoare logic and calculus has been studied in detail. It has been proved that this
development method has the properties of the formal model. The details of this model,
the results, and examples are given in the Appendices.

8. Comparison Tools and Software Environments

Carol Beckman has continued her studies into the uses of differences in software
development. Her Ph.D. preliminary thesis proposal surveys differencing techniques and
discusses the various approaches she is investigating to improve the use of these methods
in software development environments (see Appendix K.)

9. A COCOMO cost estimating package

As part of a Software Engineering course during the Spring of 1986, Professor
Campbell’s students implemented a cost estimating package for software development
based on Barry Boehm’s COCOMO model. Documentation of the package is included in
Appendix P.

SAGA Project Mid-Year Report 1986

SAGA Bibliography

. Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois

Appendix A

SAGA Project 1986 Mid—year Report 8

10.

11.

12.

13.

14.

SAGA Bibliography

October 8, 1986

Campbell, Roy H. and Paul G. Richards. SAGA: A system to automate the management of
software production. Proceedings of the National Computer Conference (May 1981)
pp. 231-234. :

Dever, Steve. "A Multi-Language Syntax-Directed Editor”, M.S. Thesis, Dept. of Computer
Science, University of Illinois at Urbana-Champaign, 1981.

Essick, Raymond B., IV and Robert B. Kolstad. "Notesfile Reference Manual"”, Report No. -
UIUCDCS-R1081, Dept. of Computer Science, University of Illinois at Urbana-Champaign,
1982.

Richards, Paul G. "A Prototype Symbol Table Manager for the SAGA Environment”, M.S.
Thesis, Dept. of Computer Science, U. of Illinois at Urbana-Champaign, 1984.

Badger, Wayne H. "MAKE: A Separate Compilation Facility for the SAGA Environment”,
M.S. Thesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1984.

Essick, Raymond B., IV. "Notesfiles: A Unix Communication Tool", M.S. Thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, 1984.

Campbell, Roy H. and Peter A. Kirslis. The SAGA Project: A System for Software Develop-
ment. Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environments (April 1984) pp. 73-80.

Campbell, Roy H. and P. E. Lauer. RECIPE: Requirements for an Evolutionary Computer-

based Information Processing Environment. Proceedings of the IEEE Software Process
Workshop (1984) pp. 67-76.

Hammerslag, David H. "TED: A Tree Editor with Applications for Theorem Proving",
Report No. UIUCDCS-R-84-1190, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, 1984.

Kirslis, Peter A., Robert B. Terwilliger and Roy H. Campbell. The SAGA Approach to
Large Program Development in an Integrated Modular Environment. Proceedings of the
GTE Workshop on Software Engineering Environments for Programming—in-
the—Large (June 1985) pp. 44-53.

Beshers, George M. and Roy H. Campbell. Maintained and Constructor Attributes.
Proceedings of the ACM SIGPLAN 85 Symposium on Language Issues in Pro-
gramming Environments (June 1985) pp. 34-42.

Hammerslag, David H., Samuel N. Kamin and Roy H. Campbell. Tree-Oriented Interactive
Processing with an Application to Theorem-Proving. Proceedings of the Second
ACM/IEEE Conference on Software Development Tools, Techniques, and Alter-
natives (December, 1985).

Kimball, John. "PCG: A Prototype Incremental Compilation Facility for the SAGA
Environment”, M.S. Thesis, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, 1985.

Terwilliger, Robert B. and Roy H. Campbell. ENCOMPASS: a SAGA Based Environment
for the Composition of Programs and Specifications. Proceedings of the 19th Hawaii
International Conference on System Sciences (January 1986) pp. 436-447.

SAGA Project 1986 Mid—year Report 9

15.

16.

17.

18.

19.

20.

21.

22.

Kirslis, Peter A. "The SAGA Editor: A Language-Oriented Editor Based on an Incremental
LR(1) Parser”, Ph. D. Dissertation, Dept. of Computer Science, University of [llinois at
Urbana-Champaign, 1986.

Terwilliger, Robert B. and Roy H. Campbell. PLEASE: Predicate Logic based ErxecutAble
SpEcifications. Proceedings of the 1986 ACM Computer Science Conference (Febru-
ary, 1986) pp. 349-358.

Kirslis, Peter A., Robert B. Terwilliger and Roy H. Campbell. An Integrated Modular
Environment for SAGA (Abstract). Proceedings of the 19th Annual Hawaii Interna-
tional Conference on System Sciences (January, 1986).

Roberts, Philip R. "Prolog Support Libraries for the PLEASE Language"”, M.S. Thesis,
Dept. of Computer Science, U. of Illinois at Urbana-Champaign, 1986.

Campbell, Roy H. SAGA: A Project to Automate the Management of Software Production

Systems. In: Software Engineering Environments, l[an Sommerville, ed. Peter Peri-
grinus Ltd, 1986, pp. 182-201.

Campbell, Roy H. and Robert B. Terwilliger,. The SAGA Approach to Automated Project
Management. In: International Workshop on Advanced Programming Environ-
ments, Lynn R. Carter, ed. Springer-Verlag Lecture Notes in Computer Science, New
York, 1986, pp. 145-159.

Terwilliger, Robert B. and Roy H. Campbell. "PLEASE: Executable Specifications for Incre-
mental Software Development”, Report No. UITUCDCS-R-86-1295, Dept. of Computer Sci-
ence, University of Illinois at Urbana~Champaign, 1986.

. "ENCOMPASS: an Environment for the Incremental Development of Software”,

Report No. UIUCDCS-R-86-1296, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, 1986.

SAGA Project Mid-Year Report 1986 Appendix B

PLEASE: Predicate Logic based ExecutAble SpEcifications

Robert Terwilliger

Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois
Appeared in the
Proceedings of the 14th Annual ACM
Computer Science Conference
Cincinnati, Ohio, February, 1986

PLEASE:
Predicate Logic based
ExecutAble SpEcifications

Robert B. Terwilliger
Roy H. Campbell

Department of Computer Science
1304 W. Springfield Ave.
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
217-333-0215

To appear in
Proceedings of the 14th Annual ACM
Computer Science Conference
Cincinnati, Ohio, February, 1986

Preprint November 30, 1985

This research is supported by NASA Grant NAG 1-138

PLEASE:
Predicate Logic based

ExecutAble SpEcifications!

Robert B. Terwilliger
Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana—Champaign
252 Digital Computer Laboratory
1304 West Springfield Avenue
Urbana, IL 61801
(217) 333-4428

13

Abstract

PLEASE is an executable specification language which supports program development by incre-
mental refinement. Software components are first specified using a combination of conventional
programming languages and mathematics. These abstract components are then incrementally
refined into components in an implementation language. Each refinement is verified before
another is applied; therefore, the final components produced by the development satisfy the origi-
nal specifications. PLEASE allows a procedure or function to be specified using pre~ and post—
conditions written in predicate logic and an abstract data type to have a type invariant.
PLEASE specifications may be used in proofs of correctness, and may also be transformed into
prototypes which use Prolog to “execute” pre- and post-conditions. The early production of exe-
cutable prototypes for experimentation and evaluation may enhance the development process.

1. Introduction

It is widely acknowledged that producing correct software is both difficult and expensive. To help
remedy this situation, methods of specifying(13,19,20,26,29,31] and verifying[14,16,19,27,38] software have
been developed. The SAGA (Software Automation, Generation and Administration) project is investigat-
ing both the formal and practical aspects of providing automated support for the full range of software
engineering activities|2,6,8,15,23,35]. PLEASE is a language being developed by the SAGA group to sup-
port the specification, prototyping, and rigorous development of software components. In this paper we
describe the development methodology for which PLEASE was created, give an example of development

using the language, and describe the methods used to prototype PLEASE specifications.

A life-cycle model describes the sequence of distinct stages through which a software product passes

during its lifetime[10]. There is no single, universally accepted model of the software life-cycle[3,40]. The

“This research is supported by NASA grant NAG 1-138.

stages of the life-cycle generate software components, such as code written in programming languages, test
data or results, and many types of documentation. In many models, a specification of the system to be
built is created early in the life—cycle; as components are produced they are verified(10] for correctness with
respect to this specification. The specification is validated[10] when it is shown to satisfy the customers

requirements.

Producing a valid specification is a difficult task. The users of the system may not really know what
they want, and they may be unable to communicate their desires to the development team. If the
specification is in a formal notation it may be an ineffective medium for communication with the custo-
mers, but natural language specifications are notoriously ambiguous and incomplete. Prototyping[12,24]
and the use of executable specification languages{21,22,29,41] have been suggested as partial solutions to
these problems. Providing the customers with prototypes for experimentation and evaluation early in the
development process may increase customer/developer communication and enhance the validation and

design processes.

To help manage the complexity of software design and development, methodologies which combine
standard representations, intellectual disciplines, and well defined techniques have been pro-
posed(17,19,37,38]. For example, it has been suggested that top-down development can help control the
complexity of program construction. By using stepwise refinement to create a concrete implementation
from an abstract specification we divide the decisions necessary into smaller, more comprehensible groups.
Methods to support the top-down development of programs have been devised[19,32] and put into use[34].
It has also been proposed that software development may be viewed as a sequence of transformations
between specifications written at different linguistic levels[25]; systems to support similar development

methodologies have been constructed{30].

The Vienna Development Method[19,34] supports the top-down development of programs specified
in a notation suitable for mathematical verification. In this method, programs are first written in a
language combining elements from conventional programming languages and mathematics. A procedure

or function may be specified using pre- and post-conditions written in predicate logic; similarly, an tnvari-

ant may be specified for a data type. Then these abstract programs are incrementally refined into pro-
grams in an implementation language. The refinements are performed one at a time, and each is verified
before another is applied; therefore, the final program produced by the development satisfies the original

specification.

Path Pascal(7] is an extension to standard Pascal allowing concurrent programming and encapsu-
lated data types. In Path Pascal, a process is a program structure which has an independent thread of
execution; independently executing processes communicate through shared data structures. Encapsulated
data types called objects are manipulated only by the predefined routines associated with the type. Path
ezpressions(4,5] specify synchronization constraints that apply to the execution of the processes, functions

and procedures within objects.

PLEASE is an extension of Path Pascal, which supports a methodology similar to the Vienna
Development Method. In PLEASE, a procedure or function may be specified with pre-~ and post-
conditions written in predicate logic, and similarly an object may be specified using an invariant. For ease
of expression, several data types have been added to the language. PLEASE specifications may be used in
proofs of correctness; they also may be transformed into prototypes which use Prolog(9] to “execute” pre-
and post—conditions, and may interact with other modules written in conventional languages. We believe
ihat the early production of executable prototypes for experimentation and evaluation will enhance the

software development process.

In section two of this paper, we describe the development methodology PLEASE was designed to
support, and in section three, we give an example of program development using PLEASE. First we dis-
cuss an example program specification and describe how an executable prototype could be created for it.
Then we show a refinement of this specification and discuss the process of verifying that the refined
specification satisfies the original. In section four, we give an example of data type specification in
PLEASE, and in section five, we discuss the implementation of the system. In section six, we describe the
work we have planned for the future and in section seven, we summarize and draw some conclusions from

our experience.

2. Incrementsl Program Development

Figure 1 shows a view of the life-cycle model which PLEASE was designed to support; a different
perspective is given in[35]. In our model, a customer comes to a software development team to have a sys-
tem constructed. In the requirements definition phase, the functions and properties of the software to be
produced by the development are determined{10]. A systems analyst produces a software requirement
specification[10], which precisely describes each requirement of the software to be produced. In our model,
software requirements specifications are a combination of natural language and components specified in
PLEASE. PLEASE specifications may be transformed into prototypes which can be used for experimenta-
tion and evaluation; they are also formal specifications of components to be produced which can be used
throughout the rest of the life-cycle. By providing executable components early in the development pro-
cess, errors in the requirements specification may be discovered and corrected before the internal structure

of the system has been defined.

Although a software system may be shown to meet the specification, this does not imply that the sys-
tem satisfies the customers requirements. The validation phase attempts to show that any system which
satisfies the specification will also satisfy the customers requirements, that is, that the requirements
specification is valid. If not, then the requirements specification should be corrected before the develop-
ment proceeds any further. In this phase the systems analyst interacts with the users to produce the sys-
tem validation summary(35]), which describes the customer’s evaluation of the software requirements

specification.

To aid in the validation process, the PLEASE components in the specification may be passed to a
prototyping ezpert who transforms them into executable prototypes which satisfy the specifications. These
prototypes may be used by the systems analyst in his interactions with the customers; they may be sub-
jected to a series of tests, be delivered to the customers for experimentation and evaluation, or be installed
for production use on a trial basis. The use of prototypes may increase customer/developer communica-
tion and enhance the validation process. If it is found that the specification does not satisfy the customers,

then it is revised, new prototypes are produced, and the validation process is reinitiated; this cycle is

K Customer

‘\\
o Requlrements—l
Validation '| Definition |
T \/
(Specnﬁcatlon
/
)) Design
Verification 7| Transformation
— \//
Specxﬁcatlon \,'
/
[]
Specxﬁca.tlon
.) Design
Verification Transformation

-~ 4

Implementation j

\\—“—/_//

Figure 1. Program Development Model

repeated until a validated specification is produced.

The validated specification then undergoes a refinement, or design transformation, in which more of
the structure of the system is defined and implemented. This phase produces a software design
specification[10], which provides a record of the design decisions made during the transformation. During
the transformation, prototypes produced from PLEASE specifications may be used in experiments per-
formed to guide the design process. The design transformation may produce components in the implemen-
tation language Path Pascal as well as an updated requirements specification. Components which have
been implemented need not be refined further, but components which are only specified will undergo

further refinements until a complete implementation is produced.

Although a new specification has been created, it’s relationship to the original is unknown. Before
further refinements are performed, a verification phase must show that any implementation which satisfies
the lower level specification will also satisfy the upper level one. In our model, this may be accomplished
using any combination of mathematical reasoning[14,19,27,38], testing[11,18,28], technical review(36], and
inspection. The use of PLEASE specifications enhances the verification of system components using either
testing or proof techniques. The specification of a component can be transformed into a prototype. This
prototype may be used as a test oracle against which the implementation can be compared. Since the
specification is formal, proof techniques may be used which range from a very detailed, completely formal
proof using mechanical theorem proving to an argument presented as in a mathematics text. PLEASE
provides a framework for the rigorous{19] development of programs. Although detailed formal proofs are
not required at every step, the framework is present so that they can be constructed if necessary. Parts of
a project may use detailed formal verification while other, less critical parts may be handled using less

expensive techniques.

To clarify our model further and show how PLEASE specifications enhance the development process,
we will consider an example of system development. We will follow the development through requirements
definition, validation of the original requirements specification, a single refinement step, and verification of

the design transformation.

3. An Example of Program Development:

_ Assume that a customer needs a program which sorts a list of integers. The program should read the
list from input, produce a sorted list which is a permutation of the original, and write the sorted list to
output. A pre-existing module implementing lists of integers is to be reused. In the requirements
definition phase, the customer discusses his needs with the systems analyst and a requirements specification
is produced. Along with other documentation, this specification might contain a sort program specified in

PLEASE.

3.1. Specifying a Program

Figure 2 shows a PLEASE specification for such a program. The specification uses the component

integer_list.spec which specifies the module integer_jist2. This module uses the PLEASE type list to define
the type integer_list as list of integer. In PLEASE, as in Lisp or Prolog, lists may have varying lengths
and there is no explicit allocation or release of storage. However, in PLEASE the strong typing of Pascal
is retained and all the elements of a list must have the same type. In PLEASE, a list is denoted by a
comma separated list of elements surrounded by < and >. The function hd(L) returns the first element in

a list L and the function t/(L) returns L with the first element removed. The function L, || L, yields the
concatenation of the elements of Ll and Lg, and the constant empty_fist denotes a list containing no ele-

ments.

The specification for the sort program defines the predicates permutation and sort, as well as giving
pre— and post—conditions for the program. In PLEASE, a predicate defines a logical expression which can
be used elsewhere. It syntactically resembles a procedure and may contain local type, variable, function or
predicate definitions. The predicate permutation states that two lists are permutations of each other if
both of the lists are empty, or if the first element in the second list is in the first list, and the remainder of
the two lists are permutations of each other. The predicate sorted states that a list is sorted if it is empty,

or if the first element in the list is the smallest and the rest of the list is also sorted. This predicate may be

*The statement #include “integer_Jist.spec” instructs a pre-processor to include text from the file integer_list.spec
into the specification before further processing.

program sort(input, output) ;
#1nclude "integer_list.spec"
var input_list, output_list :integer_list;

predicate permutation(listil, 1ist2: integer_list) ;

var front, back : integer_l1ist;

begin
(1istl = empty_list) and (11st2 = empty_list)

or

(1istl = front || <hd(list2)> || back) and
permutation(front || back, t1(1list2))

end ;

predicate sorted(l:integer_list) ;

var X :integer;

begin
(1 =empty_list)

or

forall(x| member(x,t1(1)), x >=hd(1)) and
sorted(tl(l))

end ;

pre_condition;

begin
text_to_integer_llst(1nput)<> integer_list_error
end ;
post_condition;
begin
(input_list = text_to_integer_ list(input)) and
permutation(input_list, output_list) and
sorted(output_list) and
(output_list = text_to_integer_list(output’))
end ;
begin
end.

Figure 2. Specification of Sort Program

read as, a list L is sorted if L is empty, or, if for all X such that X is a member of the tail of L, X is greater

than or equal to the head of L, and the tail of L is sorted.

In PLEASE, the pre-condition for a program specifies the conditions that the input data must meet

before execution begins. The post—condition specifies the conditions, possibly relative to the input, that

the output must meet after execution has been completed. The pre-condition for the program sort
specifies that the input file must contain the text representation for a valid list of integers. The function
text_to_tnteger_Jist projects from objects of type text onto objects of type integer_Jist, and returns the con-
stant integer_Jist_error for inputs which are not valid. The post-condition for sort states that when the
input and output files are projected onto integer_lists, the output is a permutation of the input and the
output is sorted. The notation output’ denotes the value of output after the program has executed, while

output denotes the value before execution begins.

After the requirements specification has been created, it must be validated. The systems analyst can
discuss the specification with the customer and obtain test data and expected results for the system. The
PLEASE specification then can be given to an expert prototyper, who can produce a prototype which
satisfies the specification. If the prototype performs correctly on the test data it can be delivered to the

customer for evaluation. If the prototype does not perform correctly, then we know the specification is

invalid®.

3.2. Prototyping the Specification

Figure 3 shows a simplified version of the Prolog code. which might be produced from the
specification of the sort program by an expert prototyper. There are Prolog procedures for the predicates
permutation and sort, as well as for the program pre- and post—conditions and the program as a whole.
The procedure sort simply reads the input, executes the pre-condition, executes the post-condition, and
then writes the output. The notion of execution is quite different for pre- and post-conditions. Executing
a pre-condition involves checking that given data satisfies a logical expression; for example,
sort_pre_condition simply checks that the function tezt_to_tnteger fist does not return the error indication
when called with the input to the program. Executing a post-condition means finding data that satisfies a

logical expression; for example, sort_post_condition must find a value for the output such that when the

? Note that if the prototype does satisfy the customer, we know only that a particular implementation does so.
This does not necessarily mean that all implementations which satisfy the specification would be considered adequate
by the customer. While prototypes may enhance the vahdatlon process, they do not replace communication with cus-
tomers and review of the specification.

permutation({],[1).

permutation(Listl,[Head2|Ta112]) :-
append (Front,[Head2|Back],List1),
append(Front,Back,Temp),
permutation(Temp,Ta1l2)

sorted ([1).

sorted(L) :-
t1(L,Tail),
hd (L.,Head),
forall(member(X,Tail),(X >= Head)),
sorted(Tail)

sort_pre_condition(Input) :-
noc(text_to_integer_list(Input;nteger_list_error))

sort_post_condition{(Input,0utput) :-
text _to_integer_list(Input,Input_list),
permutation(Input_list, Qutput_list),
sorted (Output_list),
text_to_integer_list(Output,Qutput_list)

sort -
read(Input),
sort_pre_condition(Input),
sort_post,_condlt,ion(Input,Output) ,
write(Qutput)

Figure 3. Prolog Code Produced from Sort Specification

input and output are projected to lists of integers, the input and output are permutations of each other

and the output is sorted.

To accomplish this, sort_post_condition converts the input data from text form, performs a naive
sort, and converts the output back to text. The procedure permutation functions as a generator and the
procedure sorted as a selector. When sort_post_condition is invoked tezt_to_integer_list is called to convert
from text to lists of integers, permutation is called to generate a permutation of the input list, and then

sorted is then called to determine if the permutation is sorted. If sorted fails, then execution backtracks

10

and permutation generates the next permutation to be evaluated. This continues until a sorted permuta-
tion is generated. At this point sorted succeeds, tezt_to_integer_list is called to convert the output to text

format, and sort_post_condition returns.

Although this program produces a sorted list of integers it’s performance will be quite poor; in the
worst case, all the permutations of the input list will be generated and tested. The performance could be
improved by substituting a pre-existing procedure which implements a superior sorti‘ng algorithm for the
section of sort_post_condition which actually performs the sort. A prototyping expert might search
libraries of specifications and prototypes to find reusable components which would improve the perfor-
mance of the prototype under construction. A prototype with better performance characteristics might be
subjected to more extensive testing and evaluation before further design transformations are applied.

After the specification for sort has been validated, it can be transformed into a more concrete form.

3.3. Refining the Specification

Assume that a decision is made to implement the program using the quicksort algorithm. As a first
step, the original specification might be refined to produce a PLEASE program which converts the input
from text to lists of integers, calls a procedure sort to produce a sorted list, converts this list to text, and
then writes the text to output. Figure 4 shows the specification of the procedure sort which would be used
in such a program. This procedure takes a list of integers as input and produces a sorted list as output.
First, an element is selected from the input list and the list is partitioned into two sublists, low and high,
so that all the members of low are less than the selected element and all the members of high are greater.
The lists high and low are then sorted recursively and the results combined to form a sorted permutation

of the input.

Although this refinement has narrowed the possible implementations to those using the quicksort
algorithm, there are still many design decisions left unmade. The new specification may be refined into a
famaly of quicksort programs; these programs might differ in many characteristics, but all would satisfy
the specification. For example, the specification for the procedure select only requires that element be a

member of list; the algorithm used to select a particular element is not specified at this level of abstraction.

11

procedure sort(input : integer_list ; var output :integer_list) ;

var element : integer ;
less, greater, sorted_high, sorted_low:integer 1ist;

procedure select(input :integer_list, var element : integer) ;
pre_condition ;
begin true end;
post_condition;
begin member(element, input) end ;

procedure partition(list : integer_list ; element : integer ;
var low, high :integer_list) ;
pre_condition;

begin member(element, 1list) end ;
post_condition;

var 1, h:integer,

begin

permutation(list, low || < element > || high) and
forall(1l | member(l, low), 1 <= element) and
. forall(h | member(h, high), h >= element)
end ;

procedure combine(sorted_low:integer list ;element :integer;
sorted high:1integer_list; var output rinteger list) ;
pre_condition;
begin true end ;
post_condition ;
begin output’ = sorted_low || element || sorted_high end;

pre_condition;
begin true end ;
post_conditien;
begin permutation(input, output) and sorted(output) end;

begin (% sort *)
if (input = empty_list) then output := empty_list
else begin
select(input, element) ;
partition(input, element, low, high) ;
sort(low, sorted low) ; sort(high, sorted_high) ;
comblne(sorted_low,element,sorted_high,output);
end ;
end ; (* sort *)

Figure 4. Part of Refinement of Sort Specification

Similarly, the specification for partition only states that all the elements in low are less than or equal to

element and all the elements in Aigh are greater than or equal to element; it says nothing about the

12

algorithm used to produce these lists. As the specification is refined further these algorithms.will be
defined, thereby narrowing the acceptable implementations. The data types used maj' undergo refinement
as well as the algorithms; for example, the module integer_list may be refined to use an array instead of a
list representation. However, before the new specification is refined further, it must be shown that any

program which satisfies the new specification will also satisfy the original.

3.4. Verifying the Refinement

A number of different methods may be used to show that the refined specification satisfies the origi-
nal. In the most informal case, inspection of the original and refined specifications by a senior designer, or
some type of peer review process might be used. A more rigorous approach might run prototypes pro-
duced from the original and refined specifications on the same test data and compare the results; this
method gives significant assurance at low cost. However, in the words of E. W. Dijkstra, “Program testing
can be used to show the presence of bugs, never to show their absence.” In the most rigorous case,

mathematical reasoning would be used.

The Vienna Development Method[19] provides rules that can be used to generate verification condi-
tions for a refinement. If the verification conditions are always true, then any implementation which
satisfies the refined specification will also satisfy the original. Figure 5 shows the verification rules for
sequential and conditional statements. Pre_OP, (v) is the pre—-condition for OP,; o represents the parame-
ters, explicit or implicit, to the pre-condition. Each OP, is verified separately. Rule di guarantees that if
the pre-condition for OP is true before the sequence begins execution and OP, through OP, , execute
correctly, then the pre-condition for OP, will be true. Rule r1 guarantees that if OP, through OP_ execute

correctly, then the post-condition for the entire sequence will be true.

To generate verification conditions, the appropriate pre- and post-conditions are simply substituted
into the verification rules. For example, to generate verification conditions for the sort procedure, the rule

for conditional statements is applied first; the expression

input = empty_list

13

For OP=0P ;0P,;...; OP, tobe correct, show:
dl. pre _OP(e) =>pre_OP ()
d2. pre_OP(s,) and post_OP (7,0,) =>

pre_OP,(7,)

ds. pre_CP(c,) and post_OP (s ,7,) and
post_OP,(m,7,) => pre_0OP,(7,)

dn. pre_OP(s,) and post_OP (s ,0,) and
post_0P,(7,0,) and ... and
post_OP (o _,0) =>pre _OP (o)

ri. pre_OP(s,) and post_OP (7 ,0,) and
posb_OPz(rrz,ns) and ... and)
post_OP (o 0) => post_OP(o,0

n’a+l

For OP = IF e THEN 01;‘1 ELSE (JP2 to be correct, show:

da. pre_OP(s) and eval(e,o) => pre_OP, (o)
db. pre_OP(s) and not eval(e.#) => pre_OP,(0)
ra. pre_OP(s,) and eval(e,o) and

post_OP, (a7 ,0,) => post_OP(o,,0,)

rb. pre_OP(s)) and not eval(e, o) and
post_OPz(nt,oz) => post_OP (s ,,0,)

Figure 5. Verification Rules for Sequential and Conditional Statements

is substituted for e,
output := empty_list

for OP, and

begin select(input,element) ; ... end

for OP,. Pre- and post-conditions for the begin ... end block then are generated to facilitate the proof.

14

-l 9.

The rule for sequential statements then is applied with begin ... end substituted for OP, select(...) for OP,,
partition(...) for OP,, sort(low,sorted_low) for OP,, sort(high,sorted_high) for OP, and combine(...) for
OP,. If the formulae produced by these substitutions are always true, then any implementations of select,

partition, and combine which satisfy the appropriate pre-~ and post-conditions will produce a correct

implementation of sort.

Automated tools may be used to perform the appropriate substitutions and format the resulting logi-
cal formulae. These formulae may then be proved by inspection, rigorous argument, or using an
automatic theorem prover; the SAGA project has developed a system which supports the creation and
management of proofs using a number of automated theorem provers[15]. Once the refinement has been
verified, the new specification may be refined further, and the process repeated until an implementation is
produced. Although this example shows only the specification of an entire program, PLEASE may also be

used to specify separately compiled components such as abstract data types.

4, Specifying Abstract Data Types

It has been proposed that the use of abstract data types can enhance program specification and
veriﬁcation[13,14,20,26,29]. In PLEASE, abstract data types may be specified using an extension of Path
Pascal objects. Figure 6 shows the specification of an object implementing a stack of integers in terms of
the type integer_list or list of integer. An object has a scope like a procedure or function; the variables
declared local to the object form its state[19], in this case a single variable of type integer_list. The invari-
ant defines the set of legal states, in other words the permitted values of the state variables; the invariant
must be true both before and after the execution of any procedure which manipulates the state. The
post—condition for a procedure or function associated with an object should specify the value of the state

at the end of execution, as well as the values of any output parameters.

The stack has four entry procedures which may be called from outside the object; any procedures or
functions not so declared may not be invoked from an external scope. The first item in the object is the

path expression, which can be used to specify synchronization constraints; in this case no constraints are

15

type stack = object
path push, pop, top, empty end ;
var s : 1nteger_list;

invariant,
begin true end;

entry procedure push(elmt :1nteger) ;
pre_condition;
begin true end;
post_condition;
begin s’ = < element > || s end;

entry procedure pop;
pre_condition ;
begin true end,;
post_condition;
begin s’ =tl(s) end;

entry function top : integer ;
pre_condition;
begin not(empty) end,;
post_condition;
begin s’ =s and top’ =hd(s) end;

entry function empty : boolean;
pre_condition;
begin true end;
post_condition;
begin
(empty’ = true and s = empty_list) or
(empty’ = false and s <> empty_list)
end ;

initially;
pre_condition;
begin true end,;
post_condition;
begin s’ = empty_list end;

end; (* stack *)

Figure 6. Stack of Integers in Terms of integer_list

specified, so all execution sequences are allowed. The procedure push takes an integer and puts it on the

stack, while the procedure pop removes the top element from the stack. The function top returns the

16

integer at the top of the stack while the function empty checks if any items are on the stack. The initially
block is executed when storage for the object is allocated and may be used to set the initial value of the

state.

5. Implementation

A prototype implementation of PLEASE is being constructed on a Vax running BSD 4.2 Unix*. In
this implementation, PLEASE specifications are transformed into code for the UNSW Prolog Inter-
preter(33]. In a program which combines modules written in conventional languages with PLEASE proto-
types, the Prolog interpreter is run as a co-routine which uses Unix pipes to communicate with the rest of
the program. When a call is made to a routine which is implemented using Prolog, the parameters are
converted to the appropriate format and sent down the pipe to the interpreter. When the execution is
complete, the results are sent back up the pipe, converted to the proper format, and the call returns. A set
of standard representations for PLEASE data types has been devised, and routines to manipulate these

representations have been added to the Prolog run~time library.

To prototype a module with a procedure call interface, the PLEASE specification is transformed into
a body and a number of headers. The body contains code in a programming language which may be com-
piled using standard tools to produce an object file. The headers contain interface specifications, which
may be included during the separate compilation of other components which use the body. The object
code for the body can then be linked in with the object files produced to create an executable system.
Using this method we have created systems which integrate modules written in C, Pascal, and Path Pascal

with prototypes created from PLEASE specifications.

6. Future Work

Although-PLEASE is currently an extension to Path Pascal, the basic specification, verification and

prototyping methods are independent of the implementation language used. In the long term, we plan to

! Unix is a trademark of AT&T Bell Laboratories

17

use Ada’® as our implementation language.

At present, the transformation of PLEASE specifications into Prolog code is largely a manual pro-
cess. We have designed a system to perform many of these transformations automatically. This system
will search libraries of specifications and implementations for components to be reused in the prototype
being constructed. We hope this will allow the automatic prototyping of a large class of PLEASE pro-
grams. We plan to build a prototype implementation to better judge the feasibility of this approach. We
also plan to investigate the possibility of extending these tools into an expert system for prototyping. For
example, if the system could not find a component with an logically equivalent specification, then
specifications with weaker pre-conditions and stronger post-conditions could be considered. The system

also might aid in the reconfiguration of prototypes for different operating environments.

In the current implementation, prototypes produced from PLEASE specifications run quite slowly as
the Prolog code is interpreted and the interface between languages is inefficient. We expect that the per-
formance of these prototypes can be dramatically increased by the use of commercially available Prolog
compilers, such as[1], which produce high quality machine code and provide interfaces to conventional
languages. We plan to adapt our implementation for use with a Prolog compiler and continue our efforts

to increase the performance of the prototypes produced from PLEASE specifications.

We are investigating the problems involved with the formal verification of systems specified in
PLEASE, and plan to investigate the problems encountered in using our methods on large projects. We
plan to gain experience by specifying, prototyping, implementing, and verifying a medium sized system

using our methods,

7. Summary and Conclusions

PLEASE is an executable specification language which supports program development by incremen-
tal refinement. Software components are first specified using a combination of conventional programming

languages and mathematics. These abstract components are then incrementally refined into programs in

8 ADA is a trademark of the U.S. Government, Ada Joint Program Office.

18

AN

an implementation language. Each refinement is verified before another is applied; therefore, the final

components produced by the development satisfy the original specifications.

Path Pascal is an extension to standard Pascal which supports concurrency and encapsulated data
types. PLEASE is an extension to Path Pascal which allows a procedure or function to be specified using
pre— and post-conditions written in predicate logic and an abstract data type to have a type invariant.
PLEASE specifications may be used in proofs of correctness, and may also be transformed into executable

prototypes.

We believe that the early production of executable prototypes for experimentation and evaluation
will enhance the development process. Prototypes may increase the communication between customer and
developer, thereby enhancing the validation process. Prototypes produced from PLEASE specifications
may be used in experiments performed to guide the design process. PLEASE specifications may enhance
the verification phase by providing a framework for the rigorous development of programs. Prototypes
produced from different level PLEASE specifications can be run on the same test data and the results com-
pared; this method can give significant assurance that a refinement is correct at a low cost. PLEASE
specifications may also be used in formal proofs of correctness. PLEASE prototypes are based on existing
Prolog technology, and their performance will improve as the speed of Prolog implementations increases.
We believe that the use of PLEASE specifications will enhance the design, development, verification and

reuse of software.

8. References

1. "Quintus Prolog Users Guide and Reference Manual (Version 3)", Quintus Computer Systems, Palo
Alto, California, 1985.

2. Beshers, George M. and Roy H. Campbell. Maintained and Constructor Attributes. Proceedings of

the ACM SIGPLAN 85 Symposium on Language Issues in Programming Environments
(June 1985) pp. 34-42.

3. Blum, B. I. The Life-Cycle -~ A Debate Over Alternative Models. Software Engineering Notes
(October 1982) vol. 7, pp. 18-20.

4. Campbell, Roy H. "Path Expressions: A Technique for Specifying Process Synchronization", Technical
Report UIUCDCS-R-80-1008, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, 1977.

(521

Campbell, R. H. and A. N. Habermann. The Specification of Process Synchronization by Path

19

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24,

25.

Ezpressions. In: Lecture Notes in Computer Science, Vol. 16, G. Goos J. Hartmanis, ed.
Springer-Verlag, 1974, pp. 89-102.

Campbell, Roy H. and Peter A. Kirslis. The SAGA Project: A System for Software Development.
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments (April 1984) pp. 73-80.

Campbell, Roy H. and Robert B. Kolstad. Path Ezpressions in Pascal. Proceedings of the Fourth
International Conference on Software Engineering (September 1979).

Campbell, Roy H. and Paul G. Richards. SAGA: A system to automate the management of software
production. Proceedings of the National Computer Conference (May 1981) pp. 231-234.

Clocksin, W. F. and C. S. Mellish. Programming in Prolog. Springer-Verlag, New York, 1981.
Fairley, Richard. Software Engineering Concepts. McGraw-Hill, New York, 1985.

Gannon, John, Paul McMullin and Richard Hamlet. Data-Abstraction Implementation, Specification,
and Testing. ACM Transactions on Programming Languages and Systems (July 1981) vol. 3,
no. 3, pp. 211-223.

Goguen, Joseph and Jose Meseguer. Rapid Prototyping in the OBJ Ezececutable Specification Laguage.
Software Engineering Notes (December 1982) vol. 7, no. 5, pp. 75-84.

Guttag, J. V. and J. J. Horning. The Algebraic Specification of Abstract Data Types. Acta Informa-
tica (1978) vol. 10, pp. 27-52.

Guttag, John V., Ellis Horowitz and David R. Musser. Abstract Data Types and Software Validation.
Communications of the ACM (December 1978) vol. 21, no. 12, pp. 1048-1063.

Hammerslag, David H., Samuel N. Kamin and Roy H. Campbell. Tree-Oriented Interactive Processing
with an Application to Theorem—Proving. Proceedings of the Second ACM/IEEE Conference
on Software Development Tools, Techniques, and Alternatives (December, 1985).

Hoare, C. A. R. Proof of Correctness of Data Representations. Acta Informatica (1972) vol. 1, pp.
271-281.

Jackson, M. System Development. Prentice-Hall, Englewood Cliffs, N.J., 1983.

Jalote, Pankaj. Specification and Testing of Abstract Data Types. Proceedings of the IEEE Com-
puter Software and Applications Conference (November 1983) pp. 508-511.

Jones, Cliff B. Software Development: A Rigorous Approach. Prentice~-Hall International, Engel-
wood Cliffs, N.J., 1980.

Kamin, Samuel. Final Data Types and Their Specification. ACM Transactions on Programming
Languages and Systems (January 1983) vol. 5, no. 1, pp. 97-121.

Kamin, S. N., S. Jefferson and M. Archer. The Role of Ezecutable Specifications: The FASE System.
Proceedings of the IEEE Symposium on Application and Assessment of Automated
Tools for Software Development (November 1983).

Kemmerer, Richard A. Testing Formal Specifications to Detect Design Errors. IEEE Transactions
on Software Engineering (January 1985) vol. SE-11, no. 1, pp. 32-43.

Kirslis, Peter A., Robert B. Terwilliger and Roy H. Campbell. The SAGA Approach to Large Program
Development in an Integrated Modular Environment. Proceedings of the GTE Workshop on
Software Engineering Environments for Programming—in-the-Large (June 1985).

Kruchten, Philippe, Edmond Schonberg and Jacob Schwartz. Software Prototyping Using the SETL
Programming Language. IEEE Software (October 1984) vol. 1, no. 4, pp. 66-75.

Lehman, M. M., V. Stenning and W. M. Turski. Another Look at Software Design Methodology.

20

[3

.

26.
27.

28.
29.

30.
31.
32.
33.

34.

35.

36.
37.
38.
39.
40.

41.

Software Engineering Notes (April 1984) vol. 9, no. 2, pp. 38-53.

Liskov, Barbara H. and Stephen N. Zilles. Specification Techniques for Data Abstractions. IEEE
Transactions on Software Engineering (March 1975) vol. SE-1, no. 1, pp. 7-18.

Loeckx, Jacques and Kurt Sieber. The Foundations of Program Verification. John Wiley & Sons,
New York, 1984.

Meyers, G. J..- The Art of Software Testing. John Wiley & Sons, New York, 1979.

Musser, David R. Abstract Data Type Specification in the AFFIRM System. IEEE Transactions on
Software Engineering (January 1980) vol. SE-8, no. 1, pp. 24-32.

Neighbors, James M. The Draco Approach to Constructing Software from Reusable Components. IEEE
Transactions on Software Engineering (September 1984) vol. SE-10, no. 5, pp. 564-574.

Parnas, D. L. The Use of Precise Specifications in the Development of Software. IFIP Congress
Proceedings (1977) pp. 861-867. '

Ross, Douglas T. Structured Analysis (SA): A Language for Communicating Ideas. IEEE Transac-
tions on Software Engineering (January 1977) vol. SE-3, no. 1, pp. 168-34.

Sammut, C. A. and R. A. Sammut. The Implementation of UNSW-Prolog. The Australian Com-
puter Journal (May 1983) vol. 15, no. 2, pp. 58-64.

Shaw, R. C., P. N. Hudson and N. W. Davis. Introduction of A Formal Technique into a Software
Development Environment (Early Observations). Software Engineering Notes (April 1984) vol. 9,
no. 2, pp. 54-79.

Terwilliger, Robert B. and Roy H. Campbell. ENCOMPASS: a SAGA Based Environment for the
Composition of Programs and Specifications. Proceedings of the 19th Hawaii International
Conference on System Sciences (January 1986).

Weinberg, Gerald M. and Daniel P. Freedman. Reviews, Walkthroughs, and Inspections. IEEE Tran-
sactions on Software Engineering (January 1984) vol. SE-10, no. 1, pp. 68-72.

Wirth, Niklaus. Program Development by Stepwise Refinement. Communications of the ACM
(April 1971) vol. 14, no. 4, pp. 221-227.

Wulf, William A., Ralph L London and Mary Shaw. An Introduction to the Construction and
Verification of Alphard Programs. IEEE Transactions on Software Engineering (December
1976) vol. SE-2, no. 4, pp. 253-265.

Yourdon, E. and L. L. Constantine. Structured Design. Prentice-Hall, Englewood Cliffs, N.J., 1979.

Zave, Pamela. The Operational Versus the Conventional Approach to Software Development. Com-
munications of the ACM (February 1984) vol. 27, no. 2, pp. 104-118.

——. An Overview of the PAISLey Project - 1984. Software Engineering Notes (July 1984) vol. 9,
no. 4, pp. 12-19.

21

SAGA Project Mid-Year Report 1986 Appendix C

The SAGA Approach to Automated Project Management

Roy H. Campbell

Robert B. Terwilliger

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois

Appeared in the
Proceedings of the International Workshop on
Advanced Programming Environments
Trondheim, Norway, June 16-18, 1986

The SAGA Approach to

Automated Project Management
(Supported by NASA grant NAG 1-138 and an ATYT Corporation research grant)

Roy H. Campbell
Robert B. Terwilliger

Department of Computer Science
University of Illinois at Urbana-Champaign
252 Digital Computer Laboratory
1304 West Springfield Avenue
Urbana, IL 61801-2987
(217) 333-4428

Abstract

ENCOMPASS, a prototype software development environment, is being constructed from com-
ponents built by the SAGA project. Application of SAGA to the major phases of the lifecycle
will be demonstrated through ENCOMPASS. The system will include configuration manage-
ment; a software design paradigm based on the Vienna Development Method; executable
specifications; languages which can be used to support modular programming, like Berkeley Pas-
cal or ADA; verification and validation tools and methods; and basic management tools. EN-
COMPASS is intended to examine many of the requirements for the design of complex software
development environments such as might be used to construct the space station software. It is
intended to be used as a prototype for examining many of the more advanced features that will
be required in future generations of software development environments which support
aerospace applications. In this paper, we describe the framework adopted within ENCOMPASS
to provide automated management. We exemplify the approach using an example taken from
problem tracking and change control during software maintenance.

1. Introduction.

Research into the software development process is required to reduce the cost of producing software
and to improve software quality. Modern software systems, such as the embedded software required for
NASA'’s space station initiative, stretch current software engineering techniques. Embedded software
systems often are large, must be reliable, and must be maintainable over a period of decades. The
software support environment for building such software systems must ensure a high-level of quality
while enabling the embedded software and the hardware on which the software runs to change and the
applications for which the embedded system is designed to evolve. Furthermore, such environments
must be cost effective.

The SAGA project is investigating the design and construction of software engineering environ-
ments for developing and maintaining aerospace systems and applications software (5,7). The research
includes the practical organization of the software lifecycle; configuration management; software require-
ments specification; executable specifications; design methodologies; programming; verification;
validation and testing; vz;gi;n”concrol; maintenénce; the reuse of software; software libraries; documen-
tation and automated management (5,11,15,17,18,19,23,24,27,28). An overview of the SAGA project
components is shown in Figure 1. The tools and concepts resuiting from SAGA are being used to
develop a prototype software development system called ENCOMPASS (28). The ENCOMPASS
software development paradigm is shown in a diagrammatic form in Figure 2. Although the research
has developed many general tools and concepts that are independent of the application language and

[FIP WG2.4 International Workshop on Advanced Programming Environments
Trondheim, Norway, June 16-18 1986

- 146 -

-1

Automated Utilities

Management

Executable

Language
Oriented
Editor

Specification

PLEASE

Software

Design

Documentati&n
Paradi
aradigm (VDM) Notesfiles
ENCOMPASS /
Distributed Workstn
Environment

Validati ‘
idation LINK

- Prototyping

Test Harness
Storage

Version
Control

Verification

Automating

Proof

Configuration

Quality Control

Figure 1: The SAGA workbench components

domain, we hope to extend ENCOMPASS to support the development of large, embedded software sys-
tems written mainly in ADA. .

In this paper, we study mechanisms to automate the management of ENCOMPASS using a simple
example based on the maintenance activities of problem tracking and change control. We describe the
prototype configuration management system underlying ENCOMPASS and discuss the interelationships
between this system and the automated management mechanisms.

2. The Software Development Environment.

To be effective, a software development environment must actively support the software develop-
ment process (5). It must be easier to use the software development tools and the environment than to
use other tools and a general operating system.

The SAGA project is concerned with software development environments, not with the construc-
tion of a general operating system. We assume that SAGA will be used in conjunction with a general
operating system such as Berkeley UNIX 4.2BSD that provides a hierarchically structured file system,

gy W o um Gy A . .

- 147 -

Problem

Planning

: . . Design
/ . Verification — g .
/ : Transformation

Requirements :
Definition / :

Validation /

Refinement

System N
Integration N

Program _

Figure 2: The ENCOMPASS software development paradigm.

virtual memory, processing operations, and mail service. Further, we assume that SAGA will be used in
conjunction with an extension of the operating system that supports a networked workstation environ-
ment, perhaps using LINK (25), a kernel based version of UNIX United (2), that supports transparent
remote network file access, remote spooling and remote processing.

The SAGA environment consists of a configuration management system and a workbench of
software development tools which are used in a set of development, management and maintenance
activities.

The configuration management system stores and structures the software components developed by
a project which may include programs, test data, documents, manuals, designs, proofs, specifications,
and contracts.

The development, management and masntenance activities manipulate the software components
being built. They include the actions of the software developers, managers, testers, quality assurance
teams, and librarians, such as the editing, compilation, or testing of a program, formatting of a docu-

ment, or delegation of a task.

- 148 -

The workbench of software development tools provides the means by which vactivities can manipulate
the software components. [n ENCOMPASS (28), this workbench is the set of SAGA tools. Developinent,
management and maintenance activities interact with the configuration management system through the
SAGA user interface, which includes the SAGA language-oriented editor Epos (5,18).

3. The Software Lifecycle.

The SAGA project has adopted a “management by objectives” (14) approach to the definition of
the software lifecycle (1,12). Each phase in the lifecycle is oriented towards satisfying an objective by,
producing a milestone. For example, the requirements specification phase produces a set of properties
that the software system to be constructed must satisfy. Validation consists of determining that the
specification of the system satisfies the requirements of the system and provides an important milestone.
in the development process. Using PLEASE (27), an executable specification language, validation can
take the form of “testing” or executing the system specification. In a large project such as the space sta-
tion software development program, validation may take the form of prototyping using a mixture of
tools including PLEASE, simulation, standardized library routines and walk-throughs.

The design phase consists of incrementally refining the requirements specification into algorithms
and component specifications. It has been shown that neither testing nor formal verifications alone can
guarantee correct software (9,10). ENCOMPASS can provide an effective verification process that util-
izes both testing and formal methods. The execution of the PLEASE specification for a component pro-
vides a test oracle for later use in the verification of refinements. Formal specifications and design.
methods also aid software reuse (20,21,22). l

In ENCOMPASS, we use the specifications not only for testing, but also as the basis for rigorous
and formal proofs of correctness. Thus, we intend that the system specification can also be used to
prove theorems concerning the requirements of the system and to prove that a design or refinement step
correctly implements a specification.

PLEASE is based on specifying programs using pre- and post-conditions. PLEASE specifications
are implemented as an extension of a programming language. Both ADA and Path Pascal (6) are being
used as vehicles for ENCOMPASS. The predicates are transformed into logic programs which are exe-
cuted in a Prolog environment (8) that is invoked from the principal programming language. Many of
the transformations may be performed automatically. Research tnto automating these transformations

continues.

Verification conditions for the refinement of an abstract program into a more concrete one can be
generated during program design. These verification conditions may be inserted into a proof tree and
TED (15), a proof tree editor, may be used to manipulate them. In particular, TED permits proofs to be
decomposed into sequences of lemmas. Various theorem provers may be invoked to mechanically certify
the verification condition.

The development methodology used for refining system specifications into programs is similar to
the Vienna Development Method (16,26). A set of rules specifies the verification conditions that are
required for a given form of refinement. These rules can be applied automatically, but in general proof
of the verification conditions requires some manual labor. Figure 2 summarizes the ENCOMPASS
approach.

The use of formal specifications in ENCOMPASS is encouraged not only to assist code and design
reuse, to promote clarity, to aid testing, and to support verification, but also to provide acceptance
criteria which may be used as management objectives for a design step. The objécﬁves can range from a
mechanical proof of the correctness of a design decision to a substantial set of test data for which the
design is valid.

.. « - . e - R .

- 149 -

Many of the objectives of each software development phase can be made into a milestone by requir-
ing the activities of the phase to generate a list of documented products. These products must be vali-
dated before the phase is complete to ensure that the phase has been successful. In SAGA and ENCOM-
PASS, we can use language-oriented tools such as the Epos editor to further enhance the documentation
of milestones. These tools can, we believe, automate repetitive effort in preparing and validating the
achievement of objectives (4).

Management for the software development lifecycle must identify, control, and record the develop-
ment process. A management model can be based on a trace of the activities within the project. Such a
trace can be used to understand the meaning of management in a similar manner to the use of traces in
defining the meaning of a programming language (Campbell and Lauer (3)). In ENCOMPASS, we are
implementing a limited set of management functions to record, monitor, initiate activities, and inhibit
inappropriate activities. Instead of using a detailed model of management, we have adopted a simpler
approach based on the larger granularity provided by milestones.

4. A Framework for Automated Management.

The use of 2 management by. objectives approach (14) in the software lifecycle introduces clearly
defined milestones that are agreed upon by the developer and manager. The management objectives for
each activity must define the pre-conditions under which the activity may occur, acceptance criteria for
the products produced by the activity, and a procedure for evaluating whether the acceptance criteria
have been met. These objectives provide a framework around which the management of the software
project can be automated.

A simple demonstration of how effective such a management scheme can be is given by the follow-
ing simplified example of managing software maintenance. Figure 3 shows the organizational structure
of a software maintenance group. Analysts and programmers are responsible to a change control board
for their contributions to the maintenance activity. Bugs and requests for modifications to maintained
software are received by the maintenance group. The change control board manages the manpower and
resources of the maintenance group and decides which change requests should be satisfied and which
change requests should be ignored.)

Figure 4 shows a simplified diagram of the flow of information that occurs within the maintenance
group. Users submit change requests to the maintenance group. The change control board assigns pro-
gram change requests to an analyst for further examination. A program change request may consist of a

bug report or a proposal for enhancements to the software. The analyst reviews the requests and pro- -

Change Control
Board

Analyst e o0 Analyst Programmer| e e e |Programmer

Figure 3: Organization structure

Program
Modification
Plans

Software

-150-
Analyst
Program
Modification
Requests
Change
Control
Board
Job
Specifications
Legend:
[notesfile Programmer
(—Jwork tray

(] active agent

Releases

Software
Modification
Summaries

Figure 4: Data flow for change requests

duces program modification plans for those that are valid. These plans are forwarded to the change con-
trol board for approval and scheduling. The change control board may either allocate a programmer to
work on a job specification based on the plan, or it may reject the plan. A rejected plan will be recon-

sidered by the analyst.

The programmer produces the appropriate software modifications and submits them to the change
control board. The board examines the modifications and may either produce a new software release or

generate a new job specification to reconsider the software modifications.

A more detailed flow diagram for the change requests would include additional feedback stages to
allow analysts and programmers to negotiate their objectives with the change control board. For exam-

ple, the programmer may wish to question the time allotted to accomplish the analyst’s plan.

In ENCOMPASS, the management system for change control is implemented using SAGA tools.
Activities within the change control system are coordinated using a combination of notesfiles, mail,

makefiles, and work trays.

|

‘- s D am Ty P A SR an o

- 151 -

4.1. The Notesfile System

~ The Notesfiles system is a distributed project information base constructed for SAGA on the UNIX
operating system (11). A file of notes can be maintained across a network of heterogeneous machines.
Each file of notes has a topic; each note has a title. A sequence of responses is associated with each note.
Notes and responses may be exchanged between separate notesfiles. Notes and responses are documented
with their authors and times of creation. Updates to the notes and responses are transmitted among
networked systems to maintain consistency. Notesfiles use the standard electronic mail facility to facili-
tate the updates. A library and standard interface permits any user program to submit a note or
response to a notesfile. This librafy has been used in the construction of automatic logging and error
reporting facilities in software and test harnesses. Within the SAGA project, we have used the Notesfile
system to organize technical discussions, product reviews, problem tracking, agendas and minutes,
grievances, design and specification documentation, lists of work to be done, appointments, news and
mail.

4.2. Work Trays

A work tray is a new mechanism which has been introduced in order to manage and record the allo-
cation, progress, and completion of work within a software development project. Each user may have a
number of work trays, each of which may contain a number of tasks that contain software products.
Products are stored as entities within the ENCOMPASS configuration management system. There are
three types of trays: input irays, in-progress trays, and file trays. Each user receives tasks in one or
more input trays. The user may then transfer these tasks to an in-progress tray where he will perform
the actions required of him and produce new products. The user may then return the task via a concep-
tual output tray to an input tray for the originator of the task. A user may also create new tasks in in-
progress trays that he owns. These tasks may then be transferred to another user’s input tray. A task
that has been transferred back into the in-progress tray of the user who created the task may be marked
as complete and transferred to a file tray for long term storage.

Each task has a home, which is the tray where the task was created, a location, which is the tray
where the task currently resides. and an attribute time, which is the time the last action involving that
task took place. Status commands allow examination of the tasks in a tray and the products in a task.

4.3. Implementation of the Change Control Scheme

User change requests can be generated because of bug reports or user requests for enhanced func-
tionality. These are sent to the change control system by electronic mail and are stored in a notesfile
“User Change Requests’’.

A user change request is a form that can be filled in manually using an editor tailored for form
filling or can be generated by software error reporting tools. It is entered into the notesfile mail system
by standard mailing utilities. In this way, user change requests can be generated from a wide range of
sources, some local and some remote.

The User Change Requests notesfile is the receiving station for all requests to change the software.
The Change Control Board manager creates a particular “Program Modification’ task in an in-progress
tray. In addition to the details extracted from the notesfile, the manager may also add the amount of
time within and the urgency with which a response to the request should be created. The manager
transfers the task to the “Program Modification Request’’ input tray of an analyst, see Figure 4. The
analyst will transfer the request to a in-progress tray in order to respond to the request. The analyst
may create a product called an “Invalid Request’’ report as a result of his analysis if he believes that-
such a report is appropriate. Alternatively, the analyst may create a detailed description of the steps

-152-

needed to implement the change or bug fix. The analyst transfers the task with the analysis of the
request back to the manager’s “Program Modification Plan” input tray. Should the analyst not respond
to the request within a reasonable time, the periodic invocation of consistency checking programs can
automatically detect the delay and enter a complaint in the ‘“Problem Tracking Management’’ notesfile
(which is not shown) and flag the Program Modification task with an item that documents the warning.

The manager may transfer the task back into his in-progress tray. Depending upon the products
produced by the analyst, he may register the task as completed, transfer it to a file tray and write a
response to the request in the notesfile that further action is unnecessary, convene the change control
board, or reject the plan and reassign the task to the analyst with recommendations for a revised plan or
to reject the request.

Should the manager wish to review the plan, the Change Control Board will be convened to discuss
the Program Modification Plans. Alternatively, the Board may discuss the Plans electronically through
the notesfile system. Given acceptance of a plan, the manager of the problem tracking system checks
out the products that are needed to make the modification from the project library and enters them into
the task. He then transfers the task to the “Job Specification’ input tray of a programmer.

The programmer receives the task and transfers it into an in—progress tray. The programmer will
add and modify code, documentation, test cases, and proofs of correctness to the products of the task.
When complete, the programmer will transfer the task to the ‘“‘Software Modification Summary” input
tray of the manager.

When a Software Modification Summary is received, the manager will again convene the Change
Control Board. If the review is satisfactory, he will check the new product into the project library as a
new version of the software and announce the release of the software through the ‘“Software Release”
notesfile. If the review is unsatisfactory, he may create a new Job Specification. -

At any time, the manager or programmers may query any of the tasks they have been assigned or
have created. Acceptance criteria may be in the form of executable procedures which produce reports
(for example, executable acceptance tests), records of compilations or examinations of the file activity of
program files. These acceptance criteria may be automatically stored as products of the task. Status
commands will summarize such records, report on who is currently working on the task, who is waiting
for completion of the task, and what other tasks are needed to be completed before the current task can

‘be completed.

Thus, very simple mechanisms can be used to automate management, provided that the objectives
being managed are well-defined. In the example given, the problem and the resulting corrective mainte-
nance need to be well-defined. In addition, the corrective maintenance must be validated. A feasibility
study of the work tray concept has been completed and the concept is being extended. In the following
section, we discuss the interaction between maintenance and the configuration management system.

5. Configuration Management System

The configuration management system is responsible for maintaining the consistency of, integrity
of and relationships between the products of software development. In the SAGA project, Terwilliger
and Campbell (28) model software configurations using a graph in which the nodes represent uniquely
named entities or uniquely named collections of entities and the arcs represent relationships between
entities. Layers within the graph represent different abstract properties of the software products. The
graph also represents the organization of the software products into separate concerns.

In ENCOMPASS, software configurations can be decomposed by organizational relationships into
vertical and horizontal structures. The vertical structures form a hierarchy and decompose the system
into independent components. For example, within a software development project, the configuration

-153-

may be structured into subsystems. These, in turn, are decomposed into modules which are decomposed
into comptlation units.

The horizontal structures represent dependencies between entities at the same hierarchical level.
Thus, each project, subsystem, module, and unit may have a horizontal structure which includes depen-
dencies between documents, version information, requirements and system specification, shared
definitions, architectural design, detailed design, code, binaries, linked binaries, test cases, procedures for
generating executable binaries, listings, reports, authors, managers, time and tool certification stamps,
development histories, and concurrency control locks. Relationships may specify design, compilation and
version dependencies. Depending upon the granularity of the entities, the graph can be represented by
the UNIX directory structure, by symbolic links, or by databases. For example, in ENCOMPASS the
vertical structure is stored using the UNIX directory structure. Shared definitions are represented by
symbolic links. A database at each level in the vertical structure is being built to provide data diction-
ary capabilities and author manager relations.

Abstractions of the collection of software products are provided by views. A view represents a par-

ticular abstract property or concern and is implemented as a mappi